Kingsley EP, Kozak KM, Pfeifer SP, Yang D-S, Hoekstra HE. The ultimate and proximate mechanisms driving the evolution of long tails in forest deer mice. Evolution 2017;71(2):261-273.Abstract

Understanding both the role of selection in driving phenotypic change and its underlying genetic basis remain major challenges in evolutionary biology. Here, we use modern tools to revisit a classic system of local adaptation in the North American deer mouse, Peromyscus maniculatus, which occupies two main habitat types: prairie and forest. Using historical collections, we find that forest-dwelling mice have longer tails than those from nonforested habitat, even when we account for individual and population relatedness. Using genome-wide SNP data, we show that mice from forested habitats in the eastern and western parts of their range form separate clades, suggesting that increased tail length evolved independently. We find that forest mice in the east and west have both more and longer caudal vertebrae, but not trunk vertebrae, than nearby prairie forms. By intercrossing prairie and forest mice, we show that the number and length of caudal vertebrae are not correlated in this recombinant population, indicating that variation in these traits is controlled by separate genetic loci. Together, these results demonstrate convergent evolution of the long-tailed forest phenotype through two distinct genetic mechanisms, affecting number and length of vertebrae, and suggest that these morphological changes — either independently or together — are adaptive.


Bendesky A, Kwon Y-M, Lassance J-M, Lewarch CL, Yao S, Peterson BK, He MX, Dulac C, Hoekstra HE. The genetic basis of parental care evolution in monogamous mice. Nature 2017;doi:10.1038/nature22074Abstract


Parental care is essential for the survival of mammals, yet the mechanisms underlying its evolution remain largely unknown. Here we show that two sister species of mice, Peromyscus polionotus and Peromyscus maniculatus, have large and heritable differences in parental behaviour. Using quantitative genetics, we identify 12 genomic regions that affect parental care, 8 of which have sex-specific effects, suggesting that parental care can evolve independently in males and females. Furthermore, some regions affect parental care broadly, whereas others affect specific behaviours, such as nest building. Of the genes linked to differences in nest-building behaviour, vasopressin is differentially expressed in the hypothalamus of the two species, with increased levels associated with less nest building. Using pharmacology in Peromyscus and chemogenetics in Mus, we show that vasopressin inhibits nest building but not other parental behaviours. Together, our results indicate that variation in an ancient neuropeptide contributes to interspecific differences in parental care. 


Hu CK, Hoekstra HE. Peromyscus burrowing: A model system for behavioral evolution. Seminars in Cell and Developmental Biology 2017;61:107-114.Abstract

A major challenge to understanding the genetic basis of complex behavioral evolution is the quantification of complex behaviors themselves. Deer mice of the genus Peromyscusvary in their burrowing behavior, which leaves behind a physical trace that is easily preserved and measured. Moreover, natural burrowing behaviors are recapitulated in the lab, and there is a strong heritable component. Here we discuss potential mechanisms driving variation in burrows with an emphasis on two sister species: P. maniculatus, which digs a simple, short burrow, and P. polionotus, which digs a long burrow with a complex architecture. A forward-genetic cross between these two species identified several genomic regions associated with burrow traits, suggesting this complex behavior has evolved in a modular fashion. Because burrow differences are most likely due to differences in behavior circuits, Peromyscus burrowing offers an exciting opportunity to link genetic variation between natural populations to evolutionary changes in neural circuits.

Mallarino R, Linden TA, Linnen CR, Hoekstra HE. The role of isoforms in the evolution of cryptic coloration in Peromyscus mice. Molecular Ecology 2017;26:245-258.Abstract

A central goal of evolutionary biology is to understand the molecular mechanisms underlying phenotypic adaptation. While the contribution of protein-coding and cis-regulatory mutations to adaptive traits have been well documented, additional sources of variation—such as the production of alternative RNA transcripts from a single gene, or isoforms—have been understudied. Here, we focus on the pigmentation gene Agouti, known to express multiple alternative transcripts, to investigate the role of isoform usage in the evolution of cryptic color phenotypes in deer mice (genus Peromyscus). We first characterize the Agouti isoforms expressed in the Peromyscus skin and find two novel isoforms not previously identified in Mus. Next, we show that a locally adapted light-colored population of P. maniculatus living on the Nebraska Sand Hills shows an up-regulation of a single Agouti isoform, termed 1C, compared to their ancestral dark-colored conspecifics. Using in vitro assays, we show that this preference for isoform 1C may be driven by isoform-specific differences in translation. In addition, using an admixed population of wild-caught mice, we find that variation in overall Agouti expression maps to a region near exon 1C, which also has patterns of nucleotide variation consistent with strong positive selection. Finally, we show that the independent evolution of cryptic light pigmentation in a different species, P. polionotus, has been driven by a preference for the same Agouti isoform. Together, these findings present an example of the role of alternative transcript processing in adaptation and demonstrate molecular convergence at the level of isoform regulation.

Mallarino R, Hoekstra HE, Manceau M. Developmental genetics in emerging rodent models: Case studies and perspectives. Current Opinion in Genetics & Development 2016;39:182-186.Abstract


For decades, mammalian developmental genetic studies have focused almost entirely on two laboratory models: Mus and Rattus, species that breed readily in the laboratory and for which a wealth of molecular and genetic resources exist. These species alone, however, do not capture the remarkable diversity of morphological, behavioural and physiological traits seen across rodents, a group that represents >40% of all mammal species. Due to new advances in molecular tools and genomic technologies, studying the developmental events underlying natural variation in a wide range of species for a wide range of traits has become increasingly feasible. Here we review several recent studies and discuss how they not only provided technical resources for newly emerging rodent models in developmental genetics but also are instrumental in further encouraging scientists, from a wide range of research fields, to capitalize on the great diversity in development that has evolved among rodents. 


Mallarino R, Henegar C, Mirasierra M, Manceau MC, Shradin C, Vallejo M, Beronja S, Barsh GS, Hoekstra HE. Developmental mechanisms of stripe patterns in rodents. Nature 2016;539:518-523.Abstract


Mammalian colour patterns are among the most recognizable characteristics found in nature and can have a profound impact on fitness. However, little is known about the mechanisms underlying the formation and subsequent evolution of these patterns. Here we show that, in the African striped mouse (Rhabdomys pumilio), periodic dorsal stripes result from underlying differences in melanocyte maturation, which give rise to spatial variation in hair colour. We identify the transcription factor ALX3 as a regulator of this process. In embryonic dorsal skin, patterned expression of Alx3 precedes pigment stripes and acts to directly repress Mitf, a master regulator of melanocyte differentiation, thereby giving rise to light-coloured hair. Moreover, Alx3 is upregulated in the light stripes of chipmunks, which have independently evolved a similar dorsal pattern. Our results show a previously undescribed mechanism for modulating spatial variation in hair colour and provide insights into how phenotypic novelty evolves.


Mallet J, Hoekstra HE. Ecological genetics: A key gene for mimicry and melanism. Current Biology 2016;26:R802-804.Abstract


 Mimicry and melanism in Lepidoptera provided the first convincing examples of natural selection in action. Genetic analysis has now shown that, surprisingly, mimicry in Heliconius butterflies and melanism in peppered moths are switched at precisely the same gene: cortex .


Bear DM, Lassance JM, Hoekstra HE, Datta SR. The evolving neural and genetic architecture of vertebrate olfaction. Current Biology 2016;26:R1039-R1049.Abstract


Evolution sculpts the olfactory nervous system in response to the unique sensory challenges facing each species. In vertebrates, dramatic and diverse adaptations to the chemical environment are possible because of the hierarchical structure of the olfactory receptor (OR) gene superfamily: expansion or contraction of OR subfamilies accompanies major changes in habitat and lifestyle; independent selection on OR subfamilies can permit local adaptation or conserved chemical communication; and genetic variation in single OR genes can alter odor percepts and behaviors driven by precise chemical cues. However, this genetic flexibility con- trasts with the relatively fixed neural architecture of the vertebrate olfactory system, which requires that new olfactory receptors integrate into segregated and functionally distinct neural pathways. This organization allows evolution to couple critical chemical signals with selectively advantageous responses, but also con- strains relationships between olfactory receptors and behavior. The coevolution of the OR repertoire and the olfactory system therefore reveals general principles of how the brain solves specific sensory problems and how it adapts to new ones.


Fisher HS, Jacobs-Palmer E, Lassance JM, Hoekstra HE. The genetic basis and fitness consequences of sperm midpiece size in deer mice. Nature Communications 2016;7:13652.Abstract


An extensive array of reproductive traits varies among species, yet the genetic mechanisms that enable divergence, often over short evolutionary timescales, remain elusive. Here we examine two sister-species of Peromyscus mice with divergent mating systems. We find that the promiscuous species produces sperm with longer midpiece than the monogamous species, and midpiece size correlates positively with competitive ability and swimming performance. Using forward genetics, we identify a gene associated with midpiece length: Prkar1a, which encodes the R1a regulatory subunit of PKA. R1a localizes to midpiece in Peromyscus and is differentially expressed in mature sperm of the two species yet is similarly abundant in the testis. We also show that genetic variation at this locus accurately predicts male reproductive success. Our findings suggest that rapid evolution of reproductive traits can occur through cell type-specific changes to ubiquitously expressed genes and have an important effect on fitness.


Copes LE, Lucas LM, Thostenson JO, Hoekstra HE, Boyer DM. A collection of non-human primate computed tomography scans housed in MorphoSource, a repository for 3D data. Scientific Data 2016;3Abstract

A dataset of high-resolution microCT scans of primate skulls (crania and mandibles) and certain postcranial elements was collected to address questions about primate skull morphology. The sample consists of 489 scans taken from 431 specimens, representing 59 species of most Primate families. These data have transformative reuse potential as such datasets are necessary for conducting high power research into primate evolution, but require significant time and funding to collect. Similar datasets were previously only available to select research groups across the world. The physical specimens are vouchered at Harvard’s Museum of Comparative Zoology. The data collection took place at the Center for Nanoscale Systems at Harvard. The dataset is archived on Though this is the largest high fidelity comparative dataset yet available, its provisioning on a web archive that allows unlimited researcher contributions promises a future with vastly increased digital collections available at researchers’ finger tips.

Greer PL, Bear DM, Lassance JM, Bloom ML, Tsukahara T, Masada FK, Nolan AC, Hoekstra HE, Datta SR. A family of non-GPCR chemosensors defines an alternative logic for mammalian olfaction. Cell 2016;165(7):1734-1748.Abstract

Odor perception in mammals is mediated by parallel sensory pathways that convey distinct information about the olfactory world. Multiple olfactory subsystems express characteristic seven-transmembrane G-protein-coupled receptors (GPCRs) in a one-receptor-per-neuron pattern that facilitates odor discrimination. Sensory neurons of the “necklace” subsystem are nestled within the recesses of the olfactory epithelium and detect diverse odorants; however, they do not express known GPCR odor receptors. Here, we report that members of the four-pass transmembrane MS4A protein family are chemosensors expressed within necklace sensory neurons. These receptors localize to sensory endings and confer responses to ethologically relevant ligands, including pheromones and fatty acids, in vitro and in vivo. Individual necklace neurons co-express many MS4A proteins and are activated by multiple MS4A ligands; this pooling of information suggests that the necklace is organized more like subsystems for taste than for smell. The MS4As therefore define a distinct mechanism and functional logic for mammalian olfaction.


Bedford NL, Hoekstra HE. Peromyscus mice as a model for studying natural variation. eLIFE 2015;4:eO6813Abstract

The deer mouse (genus Peromyscus) is the most abundant mammal in North America, and it occupies almost every type of terrestrial habitat. It is not surprising therefore that the natural history of Peromyscus is among the best studied of any small mammal. For decades, the deer mouse has contributed to our understanding of population genetics, disease ecology, longevity, endocrinology and behavior. Over a century’s worth of detailed descriptive studies of Peromyscus in the wild,
coupled with emerging genetic and genomic techniques, have now positioned these mice as model organisms for the study of natural variation and adaptation. Recent work, combining field observations and laboratory experiments, has lead to exciting advances in a number of fields—from evolution and genetics, to physiology and neurobiology.

Corbett-Detig R, Jacobs-Palmer E, Hartl DL, Hoekstra HE. Direct gamete sequencing reveals no evidence for segregation distorters in house mouse hybrids. PLoS One 2015;10(6):e0131933.Abstract

Understanding the molecular basis of species formation is an important goal in evolutionary genetics, and Dobzhansky-Muller incompatibilities are thought to be a common source of postzygotic reproductive isolation between closely related lineages. However, the evolutionary forces that lead to the accumulation of such incompatibilities between diverging taxa are poorly understood. Segregation distorters are believed to be an important source of Dobzhansky-Muller incompatibilities between Drosophila species and crop plants, but it remains unclear if these selfish genetic elements contribute to reproductive isolation in other species. Here, we collected viable sperm from first-generation hybrid male progeny of Mus musculus castaneus and M. m. domesticus, two subspecies of rodent in the earliest stages of speciation. We then genotyped millions of single nucleotide polymorphisms in these gamete pools and tested for a skew in the frequency of parental alleles across the genome. We show that segregation distorters are not measurable contributors to observed infertility in these hybrid males, despite sufficient statistical power to detect even weak segregation distortion with our novel method. Thus, reduced hybrid male fertility in crosses between these nascent species is attributable to other evolutionary forces.

Wray GA, Futuyma DA, Lenski RE, MacKay TFC, Schluter D, Strassman JE, Hoekstra HE. Does evolutionary biology need a rethink? Counterpoint: No, all is well. Nature 2014;514:161-4.Abstract

Theory accommodates evidence through relentless synthesis, say Gregory A. Wray, Hopi E. Hoekstra and colleagues.

Fisher HS, Giomi L, Hoekstra HE, Mahadevan L. The dynamics of sperm cooperation in a competitive environment. Proceedings of the Royal Society B 2014;281:20140296.Abstract

Sperm cooperation has evolved in a variety of taxa and is often considered a response to sperm competition, yet the benefit of this form of collective movement remains unclear. Here, we use fine-scale imaging and a minimal mathematical model to study sperm aggregation in the rodent genus Peromyscus. We demonstrate that as the number of sperm cells in an aggregate increase, the group moves with more persistent linearity but without increasing speed. This benefit, however, is offset in larger aggregates as the geometry of the group forces sperm to swim against one another. The result is a non-monotonic relationship between aggregate size and average velocity with both a theoretically predicted and empirically observed optimum of six to seven sperm per aggregate. To understand the role of sexual selection in driving these sperm group dynamics, we compared two sister-species with divergent mating systems. We find that sperm of Peromyscus maniculatus (highly promiscuous), which have evolved under intense competition, form optimal-sized aggregates more often than sperm of Peromyscus polionotus (strictly monogamous), which lack competition. Our combined mathematical and experimental study of coordinated sperm movement reveals the importance of geometry, motion and group size on sperm velocity and suggests how these physical variables interact with evolutionary selective pressures to regulate cooperation in competitive environments.

Poh YP, Domingues VS, Hoekstra HE, Jensen JD. On the prospect of identifying adaptive loci in recently bottlenecked populations. PLoS One 2014;9:e110579.Abstract

Identifying adaptively important loci in recently bottlenecked populations - be it natural selection acting on a population following the colonization of novel habitats in the wild, or artificial selection during the domestication of a breed - remains a major challenge. Here we report the results of a simulation study examining the performance of available population-genetic tools for identifying genomic regions under selection. To illustrate our findings, we examined the interplay between selection and demography in two species of Peromyscus mice, for which we have independent evidence of selection acting on phenotype as well as functional evidence identifying the underlying genotype. With this unusual information, we tested whether population-genetic-based approaches could have been utilized to identify the adaptive locus. Contrary to published claims, we conclude that the use of the background site frequency spectrum as a null model is largely ineffective in bottlenecked populations. Results are quantified both for site frequency spectrum and linkage disequilibrium-based predictions, and are found to hold true across a large parameter space that encompasses many species and populations currently under study. These results suggest that the genomic footprint left by selection on both new and standing variation in strongly bottlenecked populations will be difficult, if not impossible, to find using current approaches.

Linnen CR, Poh YP, Peterson BK, Barrett RD, Larson JG, Jensen JD, Hoekstra HE. Adaptive evolution of multiple traits through multiple mutations at a single gene. Science 2013;339:1312-6.Abstract

The identification of precise mutations is required for a complete understanding of the underlying molecular and evolutionary mechanisms driving adaptive phenotypic change. Using plasticine models in the field, we show that the light coat color of deer mice that recently colonized the light-colored soil of the Nebraska Sand Hills provides a strong selective advantage against visually hunting predators. Color variation in an admixed population suggests that this light Sand Hills phenotype is composed of multiple traits. We identified distinct regions within the Agouti locus associated with each color trait and found that only haplotypes associated with light trait values have evidence of selection. Thus, local adaptation is the result of independent selection on many mutations within a single locus, each with a specific effect on an adaptive phenotype, thereby minimizing pleiotropic consequences.

Weber JN, Peterson BK, Hoekstra HE. Discrete genetic modules are responsible for complex burrow evolution in Peromyscus mice. Nature 2013;493:402-5.Abstract

Relative to morphological traits, we know little about how genetics influence the evolution of complex behavioural differences in nature. It is unclear how the environment influences natural variation in heritable behaviour, and whether complex behavioural differences evolve through few genetic changes, each affecting many aspects of behaviour, or through the accumulation of several genetic changes that, when combined, give rise to behavioural complexity. Here we show that in nature, oldfield mice (Peromyscus polionotus) build complex burrows with long entrance and escape tunnels, and that burrow length is consistent across populations, although burrow depth varies with soil composition. This burrow architecture is in contrast with the small, simple burrows of its sister species, deer mice (P. maniculatus). When investigated under laboratory conditions, both species recapitulate their natural burrowing behaviour. Genetic crosses between the two species reveal that the derived burrows of oldfield mice are dominant and evolved through the addition of multiple genetic changes. In burrows built by first-generation backcross mice, entrance-tunnel length and the presence of an escape tunnel can be uncoupled, suggesting that these traits are modular. Quantitative trait locus analysis also indicates that tunnel length segregates as a complex trait, affected by at least three independent genetic regions, whereas the presence of an escape tunnel is associated with only a single locus. Together, these results suggest that complex behaviours--in this case, a classic 'extended phenotype'--can evolve through multiple genetic changes each affecting distinct behaviour modules.

Kocher SD, Li C, Yang W, Tan H, Yi SV, Yang X, Hoekstra HE, Zhang G, Pierce NE, Yu DW. The draft genome of a socially polymorphic halictid bee, Lasioglossum albipes. Genome Biology 2013;14:R142.Abstract

BACKGROUND: Taxa that harbor natural phenotypic variation are ideal for ecological genomic approaches aimed at understanding how the interplay between genetic and environmental factors can lead to the evolution of complex traits. Lasioglossum albipes is a polymorphic halictid bee that expresses variation in social behavior among populations, and common-garden experiments have suggested that this variation is likely to have a genetic component. RESULTS: We present the L. albipes genome assembly to characterize the genetic and ecological factors associated with the evolution of social behavior. The de novo assembly is comparable to other published social insect genomes, with an N50 scaffold length of 602 kb. Gene families unique to L. albipes are associated with integrin-mediated signaling and DNA-binding domains, and several appear to be expanded in this species, including the glutathione-s-transferases and the inositol monophosphatases. L. albipes has an intact DNA methylation system, and in silico analyses suggest that methylation occurs primarily in exons. Comparisons to other insect genomes indicate that genes associated with metabolism and nucleotide binding undergo accelerated evolution in the halictid lineage. Whole-genome resequencing data from one solitary and one social L. albipes female identify six genes that appear to be rapidly diverging between social forms, including a putative odorant receptor and a cuticular protein. CONCLUSIONS: L. albipes represents a novel genetic model system for understanding the evolution of social behavior. It represents the first published genome sequence of a primitively social insect, thereby facilitating comparative genomic studies across the Hymenoptera as a whole.

Losos JB, Arnold SJ, Bejerano G, Brodie ED, Hibbett D, Hoekstra HE, Mindell DP, Monteiro A, Moritz C, Orr HA, Petrov DA, Renner SS, Ricklefs RE, Soltis PS, Turner TL. Evolutionary biology for the 21st century. PLoS Biology 2013;11:e1001466 PDF