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SUMMARY
How evolution modifies complex, innate behaviors is largely unknown. Divergence in many morphological
traits, and some behaviors, is linked to cis-regulatory changes in gene expression. Given this, we compare
brain gene expression of two interfertile sister species of Peromyscusmice that show large and heritable dif-
ferences in burrowing behavior. Species-level differential expression and allele-specific expression in F1 hy-
brids indicate a preponderance of cis-regulatory divergence, including many genes whose cis-regulation is
affected by burrowing behavior. Genes related to locomotor coordination show the strongest signals of
lineage-specific selection on burrowing-induced cis-regulatory changes. Furthermore, genetic markers
closest to these candidate genes associate with variation in burrow shape in a genetic cross, suggesting
an enrichment for loci affecting burrowing behavior near these candidate locomotor genes. Our results pro-
vide insight into how cis-regulated gene expression can depend on behavioral context and how this dynamic
regulatory divergence between species may contribute to behavioral evolution.
INTRODUCTION

Animals exhibit a diverse array of innate behaviors, the genetic

basis of which remains poorly understood. Comparative and

evolutionary developmental studies of morphology have linked

numerous traits to differences in the cis-regulatory control of

gene expression (Wittkopp et al., 2004). Given these patterns,

it is likely that at least some components of behavioral evolution

are associated with cis-regulatory changes (e.g., Wang et al.,

2019; York et al., 2018). Technical advances are enabling behav-

ioral and transcriptomic studies across an increasingly broad

swath of animal species and clades (Jourjine and Hoekstra,

2021). Here, we dissect gene-regulatory contributions to varia-

tion in an innate, natural behavior—burrowing—among deer

mice (genus Peromyscus).

Deer mice are an emerging system for investigating the mech-

anisms of behavioral evolution (Bedford and Hoekstra, 2015).

Two sister species, P. maniculatus and P. polionotus, differ in

their species-typical burrow size and shape. P. maniculatus dig

short burrows (<10 cm), consisting of an entrance tunnel and a

nest chamber, while P. polionotus construct longer (>35 cm) bur-

rows that, in addition to an entrance tunnel and nest chamber,

include an upward sloping ‘‘escape tunnel’’ (Figure 1A) (Dawson

et al., 1988; Weber and Hoekstra, 2009). One explanation for this
This is an open access article under the CC BY-N
behavioral difference is that long burrows buffer against environ-

mental fluctuations in the open habitats ofP. polionotus (Bedford

et al., 2021). Morphological comparisons between these two

species have not found evidence for digging-related specializa-

tions (e.g., forepaw enlargement as seen in moles), suggesting

that burrow differences are largely driven by behavioral mecha-

nisms (Hu and Hoekstra, 2017). Cross-fostering experiments

further suggest that this behavioral variation has a strong genetic

component (Metz et al., 2017).

A forward-genetic screen has shown that the P. polionotus

burrow is dominantly inherited and that genomic regions

affecting divergence in burrow size and shape can be mapped

to distinct loci (size: 3 loci, shape: 1 locus; Weber et al., 2013).

However, identifying causal genes and pathways from such

quantitative trait locus (QTL) analyses remains amajor challenge.

Furthermore, although a widespread behavior, very little is

known about the genetic basis of burrowing, offering no obvious

candidate genes.

To address this, we developed an integrative approach for

identifying burrowing-associated genes and pathways via

comparative transcriptomics. Although comparing gene expres-

sion across species can be informative, it is often affected by

confounding factors such as differences in cell-type abun-

dances, developmental timing, and the unavoidable variability
Cell Reports 38, 110360, February 15, 2022 ª 2022 The Authors. 1
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Figure 1. Burrowing behavior experimental

design and phenotypes

(A) Species-typical burrow shapes of P. maniculatus

and P. polionotus.

(B) Mice were split into control and burrowing co-

horts and individually exposed to the corresponding

enclosure for 90 min prior to dissection (n = 3 per

‘‘genotype’’).

(C) Burrow lengths dug during 90-min test period by

burrowing group. Horizontal lines indicate mean

value.

(D) Frequency of upward digging observed during

90-min test period by burrowing group. See also

Figure S1 and Table S1.
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that accumulates during an organism’s lifetime. Moreover, in

such comparisons cis- and trans-acting regulatory divergence

cannot be disentangled. However, measuring allele-specific

expression (ASE) in F1 hybrids circumvents these issues: it con-

trols for these confounders because the alleles being compared

are present in the same individuals in the same cells at the same

time and only reflects cis-regulatory divergence (since trans-

acting effects are expected to affect both alleles equally).

By analyzing neural gene expression in burrowing F1 hybrids

of P. maniculatus (short burrow) and P. polionotus (long

burrow), we identified extensive cis-regulatory differences

related to behavioral state. Intersecting these results with

QTL data connected a discrete subset of locomotor-related

genes displaying species-specific expression with burrowing

loci, implicating their involvement in the evolution of this com-

plex behavior.

RESULTS

We introduced all of the experimental mice (n = 18; 6 mice for

each of three ‘‘genotypes’’: P. maniculatus, P. polionotus, F1 hy-

brids) individually to a large sand-filled enclosure overnight and

confirmed they dug full-length genotype-typical burrows (Fig-

ure S1). We observed a pattern of P. polionotus-dominant

burrow trait inheritance in F1 hybrids that is consistent with pre-

vious studies (Dawson et al., 1988; Weber et al., 2013).

To measure burrowing-induced gene transcription, we then

exposed a ‘‘test’’ cohort of mice (n = 9; 3 mice per genotype) to

large sand enclosures for 90min. This time frame captures the in-

crease in primary and secondary response in gene transcription

to a stimulus (i.e., genes that do not need de novo translation

for transcription and the followingwave) (Tullai et al., 2007). A sec-

ond ‘‘control’’ cohort of animals (n = 9; 3 mice per genotype) was

exposed to a thin layer of sand in a new housing cage to account
2 Cell Reports 38, 110360, February 15, 2022
for handling and sensory stimuli from sand

(Figure 1B). In this 90-min period, we found

that all 9 ‘‘test’’ mice had burrowed sub-

stantially, although none to the full burrow

length achieved in overnight trials (Fig-

ure 1C; Table S1). All of the P. polionotus

and F1 hybrids, but not P. maniculatus,

had begun upward digging, which is char-

acteristic of the escape tunnel (Figure 1D).
Thus, the mice included in this study, in both overnight and acute

trials, behaved in a genotype-typical way.

To measure overall and burrowing-dependent expression

divergence between P. maniculatus and P. polionotus, we

used RNA sequencing (RNA-seq) to generate whole-brain tran-

scriptomes from both burrowing test and control animals that

had not burrowed. Because gene expression depends on cell

type (Hrvatin et al., 2018) as well as the pattern of activity (Tys-

sowski et al., 2018), we anticipated that the neural activity spe-

cific to burrowing would affect gene expression. Furthermore,

since neural substrates underlying burrowing have diverged be-

tween these two species, we expected to find species-specific

differences in burrowing-induced gene expression. We

computed differential expression between the two species (Fig-

ure 2A; see STAR Methods for all comparisons tested). We de-

tected �14,000 expressed genes (14,126 for burrowing mice

and 14,393 for control animals; transcripts per million [TPM]

>1), and 13,273 genes were shared across all 12 samples. Of

those, we found that a total of 3,619 genes were differentially ex-

pressed between species in both the burrowing and control con-

ditions, and an additional 1,962 and 670 genes to be differentially

expressed in either only the burrowing or control conditions,

respectively (Benjamini-Hochberg adjusted p < 0.05; Figure 2B).

Principal-component analysis of whole transcriptome data

cleanly separated P. maniculatus and P. polionotus along PC1

(86.95%of variance explained; Figure 2C). These results demon-

strate that, while the majority of differentially expressed genes

was stable across treatments, a subset of genes show spe-

cies-specific regulation in response to behavioral condition.

To investigate regulatory divergence in the neural transcrip-

tomes of P. maniculatus and P. polionotus, we generated

whole-brain RNA-seq from P. maniculatus3 P. polionotus F1 hy-

brids that were exposed to burrowing or control conditions.

Measuring gene expression in F1 hybrids controls for differences



Figure 2. Gene expression divergence between P. maniculatus and P. polionotus alleles

(A) Schematic of potential mechanism underlying behavior-dependent differential expression between P. maniculatus and P. polionotus. Gene regulatory regions

corresponding to the P. maniculatus (yellow rectangle) and P. polionotus (blue rectangle) alleles. Species-specific sequence changes to this region may alter the

binding of a burrowing-responsive transcription factor (green circle).

(B) Venn diagram of the number of the genes with significant differential expression between control P. maniculatus and P. polionotus (pink) and burrowing

P. maniculatus and P. polionotus (green).

(C) Principal-component analysis of burrowing and control P. maniculatus (yellow) and P. polionotus (blue) whole-brain transcriptomes.

(D) Schematic of potential mechanism underlying allele-specific expression (ASE).

(E) Distribution of allelic expression bias for all genes in control versus burrowing F1 hybrids.

(F) Venn diagram of the number of the genes with significant ASE between control F1 hybrids (pink) and burrowing F1 hybrids (green).

(G) Scatterplot comparing the distribution of parental allele expression in burrowing F1 hybrids (x axis) and gene expression in burrowing P. maniculatus and

P. polionotus (y axis). Identity line shown in red. All of the analyses were performed on 3 biological replicates per ‘‘genotype’’ and behavioral context. See also

Figure S2.
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in environment and cell-type abundances, which may contribute

to expression differences in parental species, allowing for more

direct comparison of parental alleles as well as the detection of

ASE indicative of cis-regulatory divergence (Fraser et al., 2011;

Wittkopp et al., 2004). By extending analyses of ASE to multiple

conditions, one can measure differential ASE (diffASE), which

can identify context-dependent regulatory differences (York

et al., 2018). In the case of behavior, such context-dependent

regulatory divergence may reflect neural activity-responsive

genes that are controlled by regulatory elements containing

sequence differences between the parental species (Figure 2D).

Our analyses of F1 hybrid transcriptomes identified ASE differ-

ences in genes from both burrowing and control animals. Over-

all, the distribution of ASE was slightly biased toward

P. polionotus alleles (Figure 2E), which was not attributable to
mapping bias because we used the P. maniculatus genome as

our reference. Instead, this slight bias may reflect a global imbal-

ance favoring paternal alleles as described in Mus musculus

(Crowley et al., 2015) or could reflect a species-specific expres-

sion bias. Overall, we detected a total of 3,456 genes with signif-

icant ASE (binomial test; Bonferroni adjusted q < 0.05). Like dif-

ferential expression in the parental species, most ASE genes (n =

1,927) were shared between the two conditions; nonetheless, a

substantial portion was found only in burrowing animals (n =

1,024) and to a lesser extent only in control animals (n = 505) (Fig-

ure 2F). A comparison of the distribution of F1 hybrid allelic ratios

during burrowing (log2[P. maniculatus allele/P. polionotus allele])

to the ratios of parental species’ burrowing expression

(log2[P. maniculatus TPM/P. polionotus TPM]) indicated the

presence of both cis- and trans-regulatory differences
Cell Reports 38, 110360, February 15, 2022 3
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Figure 3. Analyses of context-dependent

allele-specific expression

(A) Schematic showing comparison between F1
behavioral groups to calculate differential allele-

specific expression (diffASE) (top) and allelic induc-

tion (bottom).

(B) Scatterplot comparing the distribution of allelic

ratios between burrowing and control conditions.

Points (representing individual genes) are colored by

binned diffASE p values obtained using a Fisher’s

exact test on P. maniculatus and P. polionotus allele

counts in the two conditions.

(C) Schematic outlining the logic of the sign test.

Here, we consider a functional set composed of 5

genes with corresponding values for allelic induction

(the magnitude of which is represented by distance

from the y axis). Under unconcerted regulatory

evolution, we expect the parental allele with greater

induction to be relatively evenly shared between the

2 alleles (left). In the case of concerted regulatory

evolution, we expect a strong preference in allelic

induction toward one species or the other (right).

(D) Scatterplot highlighting the distribution of allelic

induction for diffASE genes in the locomotor-coor-

dination functional category. All of the analyses were

performed on 3 biological replicates per ‘‘genotype’’

and behavioral context.
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(Figure 2G). The same comparison between control F1 hybrid

samples and control parental species samples yielded similar re-

sults (Figure S2). Accordingly, the overall relationship between

the two distributions (r2 = 0.32) was similar to that observed in

other studies of interspecific hybrids produced by crossing

diverged lineages (e.g., Goncalves et al., 2012; Mack et al.,

2016; McManus et al., 2010). These observations suggest that

detectable regulatory differences in Peromyscus brain gene

expression arise from both cis- and trans-acting divergence,

and that capturing the brain in different behavioral states can un-

mask further regulatory differences. Our data suggest that cis-

regulation in the brain can be highly context specific (York

et al., 2018), in contrast to other tissues or species in which

cis-regulation is robust to environmental changes (Verta and

Jones, 2019).

Given these observations, we next formally tested for the pres-

ence of context-dependent cis-regulation. We identified genes

with differential ASE (diffASE)—for example, those that showed

allele-specific induction or suppression between burrowing and

control F1 hybrids (Figure 3A). Comparing mean levels of ASE be-

tween burrowing and control hybrids identified a number of outlier

genes (Figure 3B), despite the fact that, overall, ASE values were

relatively consistent between the two conditions (r2 = 0.94). To test

for the presence of diffASE, we filtered our data to include only

genes with evidence of expression across all 6 individuals

(11,928 genes) and then used a Fisher’s exact test to compare

allelic counts in a 23 2 contingency table (P. polionotusburrowing

allele, P. polionotus control allele; P. maniculatus burrowing allele,

P. maniculatus control allele) for pairs of burrowing and control

samples (see STAR Methods). The resulting p values were com-

bined using Fisher’s method and adjusted via Bonferroni correc-

tion. After doing so, we detected 2,844 genes with significant

combined diffASE. We further narrowed this list to those genes
4 Cell Reports 38, 110360, February 15, 2022
possessing significant diffASEacross all three burrowing and con-

trol pairs, resulting in a conservative and high-confidence list of

genes displayingdiffASE (n = 177 genes; Figure 3B).While thema-

jority of these genes retained their direction of bias between bur-

rowing and controls, a subset did switch from P. maniculatus

biased in control samples to P. polionotus biased in burrowing

samples (n = 24/177); no genes switched in the opposite direction,

a statistically significant difference (Fisher’s exact test: p = 5.173

10�8). These data identify genes that change expression level in

mice when they burrow and show that we see more upregulation

of alleles from the long-burrowing P. polionotus than from the

short-burrowing P. maniculatus.

We next asked whether genes exhibiting burrowing-depen-

dent diffASE could implicate functional mechanisms underlying

burrowing evolution. Genes involved in a specific pathway or

biological process can exhibit concerted gene expression (i.e.,

the genes will be transcriptionally upregulated or downregulated

together) (Fraser et al., 2011; York et al., 2018). Because burrow-

ing predominantly was associated with an increase in gene

expression level, we focused on whether a diffASE gene ex-

hibited greater allelic induction in one parental allele than the

other (Figure 3A). If a specific pathway or biological process

has undergone selection, then we expect an enrichment of al-

leles with the same direction of allelic induction. To test this hy-

pothesis, we used the sign test, a framework for detecting line-

age-specific selection on the regulation of functionally related

groups of genes (as defined by theMammal PhenotypeOntology

[MP; Smith and Eppig, 2009]). We tested gene sets for whether

member genes displayed consistent biases in allelic induction

toward one parental species or the other (Fraser et al., 2011;

York et al., 2018) (Figure 3C; see STAR Methods). We found

that significantly more P. polionotus alleles involved in abnormal

locomotor coordination (MP: 0001392) were upregulated during
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Figure 4. Intersection of QTL and diffASE

(A) Diagram of a burrow and measured traits.

(B) Schematic of the procedure for permutation testing of QTL/diffASE intersection. Model fits for genemarkers from the list of interest and 10,000 random sets of

the same size are computed (represented by LOD plots). The observed fit (red line) is then compared to the 10,000 random sets (gray distribution) to calculate a p

value.

(C) Plot of genome-wide LOD scores for entrance-tunnel length (adapted fromWeber et al., 2013). Overlaid are the locations of the closest markers to genes in the

abnormal locomotor-coordination set colored by species.

(D and E) Scatterplots of results for selected measures from the permutation test. For each measure �log10(p values) are plotted for the following subsets: 200

most differentially expressed genes between P. maniculatus and P. polionotus while burrowing (brown; Parental DE), genes with significant ASE (light green;

ASE), genes with significant diffASE (dark green; diffASE), diffASE genes associated with locomotor function (red; Locomotor), diffASE genes associated with gait

(magenta; Gait), P.maniculatus-biased locomotor diffASE genes only (yellow;P. manmotor), and P. polionotus-biased locomotor diffASE genes only (blue; P. pol

motor).

(F and G) Histograms of permutation test results for diffASE genes associated with locomotor function for the same traits shown in (D) and (E), respectively.

See also Tables S2 and S3.
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burrowing compared to the P. maniculatus allele (n = 26/31 al-

leles; Bonferroni-corrected Fisher’s exact test p < 0.001; Fig-

ure 3D). The second strongest signal of concerted regulation

also involved a category related to locomotor defects: abnormal

gait (MP: 0001406; Bonferroni-corrected Fisher’s exact test p <

0.06), although not statistically significant. Thus, we find evi-

dence that the dynamic, behavior-dependent cis-regulation of

genes involved in locomotion was subject to lineage-specific se-

lection between P. polionotus and P. maniculatus.

Having identified locomotion-related gene sets with behavior-

dependent cis-regulation, we next explored whether these genes

are strong candidates for harboring causal mutations underlying

species differences in burrowing behavior or, alternatively, simply

downstream genes responding to burrowing. To test this, we ex-

ploited a published QTL study for burrow traits in a large back-
cross between P. polionotus and P. maniculatus, which identified

four genomic regions associated with burrow architecture (Weber

et al., 2013). While this study identified four genomic regions

significantly associated with burrow architecture, additional

causal genetic variants likely contribute to differences in burrow-

ing behavior but display effect sizes that are too small to reach

genome-wide significance asQTL.With this inmind, we assessed

whether genetic markers nearest our candidate genes affecting

locomotor coordination were associated with traits such as

burrow size, shape, and escape tunnel presence/size (Figure 4A).

In addition, we sought to compare the QTL associations of the

differentially induced locomotor-coordination genes with other

forms of gene expression divergence that are more commonly

analyzed (e.g., allele-specific expression in hybrids, differential

expression between species). If causal genetic differences for a
Cell Reports 38, 110360, February 15, 2022 5
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given trait are associatedwith differential allelic induction, thenwe

expect that the LOD distributions for the candidate locomotor

genes should be greater than the other sets. To test this, we as-

sessed the LOD distributions of markers representing a range of

gene expression-divergence types: genes associated with loco-

motor coordination (P. maniculatus [n = 5 genes] or

P. polionotus [n = 26 biased genes only]) and abnormal gait (n =

22), geneswith significant diffASE (n = 177), genes with significant

ASE (n = 200), and genes most differentially expressed between

P. maniculatus and P. polionotuswhile burrowing (n = 200). While

a high log odds (LOD) score near a gene certainly does not prove

the involvement of that specific gene in the trait, observing a sys-

tematic bias toward high LODscores for a group of genes strongly

implies that group is enriched for genes affecting trait divergence.

When we compared the LOD scores of each burrow trait for

markers closest to differentially induced locomotor-coordination

genes to those of randomly permuted marker sets (Figures 4B

and 4C), we found that the candidate markers had significantly

higher LOD scores than the random sets for average entrance

tunnel length (Figures 4D and 4F; p = 0.0004; 10,000 permuta-

tions, see STAR Methods), maximum entrance tunnel length (p

= 0.006), and average total length (Figures 4E and 4G; p =

0.004). These results suggest that this gene set is enriched for

causal genetic effects relative to the genomic background (Table

S2; with the caveat that other causal genes not identified by our

RNA-seq analysis could also be near our selectedmarkers; how-

ever, this should only add noise, making our results conserva-

tive). Furthermore, locomotor-coordination genes tended to

display stronger associations compared to all of the other gene

sets across the traits tested (Figures 4D and 4E).

Given the association between the locomotor-coordination

gene set and burrowing phenotypes, we next asked whether

this association is affected by the direction of gene expression

bias. For example, because P. polionotus burrow-shape traits

appear largely dominant, we may expect animals with more

P. polionotus genotypes at diffASE genes to have increased trait

values. As described above, regression-based tests of the geno-

type-phenotype relationships demonstrated associations with

diffASE genes involved in locomotor coordination and total

burrow length, entrance tunnel length, and escape tunnel length

(Table S3). Within this group of genes, P. polionotus-biased

genes in particular showed a stronger association with escape

tunnel length than the other two traits. Escape tunnel is a trait

for which previous QTL mapping identified only a single peak

(with escape tunnel presence/absence treated as a binary trait)

(Weber et al., 2013); however, our ASE approach implicated

additional candidate genes residing in regions of moderate trait

association in the genome. Long entrance tunnels and the pres-

ence of an escape tunnel are derived traits in P. polionotus

(Weber and Hoekstra, 2009), and these results suggest that

these two traits are likely related to P. polionotus-specific

changes to locomotor control.

DISCUSSION

Burrowing is a natural, complex, innate behavior, comprising a

series of coordinated head and limb movements, that consis-

tently differs even among closely related species of Peromyscus
6 Cell Reports 38, 110360, February 15, 2022
(Hu and Hoekstra, 2017). At the extreme, P. polionotus uniquely

constructs long burrows, including an escape tunnel. QTL map-

ping of burrow traits revealed four genomic loci that harbor mu-

tations for the derived burrow architecture observed in

P. polionotus (Weber et al., 2013). Here, to move from large

QTL regions to specific genes, we developed a complementary

RNA-seq-based strategy to identify patterns of gene expression,

and ultimately candidate genes, that show lineage-specific

changes in the P. polionotus brain. We find that genes associ-

ated with locomotor coordination have undergone cis-regulatory

change such that, for themajority of locomotor candidate genes,

the P. polionotus allele is induced while animals are burrowing.

While we cannot conclude that these changes are directly

linked to burrow evolution, since there are other ecological

changes that may select for differences in locomotion, we do

show that these candidate genes are enriched for association

with burrow traits in a genetic cross, suggesting that theymay in-

fluence the evolution of this ‘‘extended phenotype’’ (Dawkins,

1982). We should emphasize that, while this finding may seem

intuitive, it would not have emerged by analyzing parental differ-

ential expression or ‘‘baseline’’ allele-specific expression alone.

Instead, we were able to implicate candidate genes, even those

that may have only a small behavioral effect, through our

approach, using only a fraction of the animals that would be

needed for a QTL-mapping population. Thus, by measuring dif-

ferential (i.e., behavior-evoked) allele-specific expression, we

can identify genes (and pathways) with dynamic cis-regulatory

divergence that likely contribute to an ecologically important

and complex behavior.

In fact, our findings complement the growing literature impli-

cating gene regulatory mechanisms in behavioral evolution (Si-

nha et al., 2020). Studies increasingly are identifying behaviorally

associated regulatory divergence in both invertebrates (espe-

cially social insects [Kapheim et al., 2015; Mikheyev and Link-

svayer, 2015]) and vertebrates (Macrı̀ et al., 2019; Patil et al.,

2021). Notably, the size and structure of these regulatory archi-

tectures appear to vary broadly across organisms. At one

extreme, a single locus may be sufficient to account for behav-

ioral differences; for example, the slowpoke locus largely ex-

plains differences in courtship song between strains of

Drosophila simulans andmauritiana (Ding et al., 2016). However,

it is likely that most behavioral traits are associated with multiple

regulatory differences, as is the case here (York, 2018). These

regulatory elements may act by shifting gene expression level

and/or altering the spatiotemporal expression of the gene be-

tween groups (Bendesky et al., 2011; Gu et al., 2017).

Our work also suggests that context-dependent cis-regulation

plays a role in the evolution of the neural circuits underlying bur-

rowing behavior. This finding is in line with previous observations

of this phenomenon during bower building in LakeMalawi cichlid

species (York et al., 2018). These studies indicate the potential

presence of context-dependent cis-regulation driving evolu-

tionary divergence in behavior. It will be of great interest to

further probe these patterns as they may indicate an unappreci-

ated genomic regulatory code associated with neural activity,

one that may overlap with the transcriptional activity used during

organismal development. Such work may also contribute to the

growing body of research on activity-dependent transcriptional
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mechanisms in a variety of vertebrate neurons and circuits and

may even help elucidate the evolutionary and genomic mecha-

nisms underlying human neuropsychiatric disorders (Yap and

Greenberg, 2018).

Limitations of the study
Our study demonstrated how context-dependent allele-specific

expression can be combined with genetic mapping to identify

candidate genes underlying behavior evolution. However, it is

important to delimit what conclusions we can draw from our

data. First, we focused on the role of cis-regulation (and indi-

rectly inferred the presence of trans-effects). While it is possible

to disentangle the individual contributions of and interactions

between cis- and trans-regulatory mechanisms (Wittkopp

et al., 2004), our sample size and the specifics of our study

design would make these results difficult to interpret. Second,

we used whole-brain tissue for our RNA-seq experiments,

potentially obscuring any region-specific or cell-type regulatory

divergence. While the robust intersection between the QTL and

transcriptomic data suggest that we are detecting a great deal

of the burrowing-associated regulatory differences between

P. maniculatus and P. polionotus, a future study targeting

candidate brain regions or cell populations could provide addi-

tional resolution. Lastly, our 90-min time point represents only a

single snapshot of brain transcription post-burrowing, and

therefore our results likely underestimate the extent of

context-dependent cis-regulation, since some transcriptional

changes may have been missed (Shih and Fay, 2021). Both

greater region or cell-type specificity and temporal sampling

will be of interest in relation to assessing the different mecha-

nisms of gene regulation discussed above. Nonetheless,

despite the limited granularity of our study, it is clear that

context-dependent cis-regulation is associated with the evolu-

tion of burrowing behavior.
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KEY RESOURCES TABLE
REAGENT or RESOURCE SOURCE IDENTIFIER

Chemicals, peptides, and recombinant proteins

TRIzol Thermo Fisher Scientific 15596026

5Prime Phase Lock Gel Tube Heavy Quantabio 2302830

Critical commercial assays

RNeasy Mini Kit Qiagen 74104

TruSeq Stranded mRNA Prep Kit Illumina 20020594

Deposited data

Brain RNA-seq This paper GEO: GSE193266

Experimental models: Organisms/strains

Peromyscus polionotus subgriseus; PO

stock

Peromyscus Genetic Stock Center N/A

Peromyscus maniculatus bairdii; BW stock Peromyscus Genetic Stock Center RRID: MMRRC_041477-MU

Software and algorithms

MUMmer4 Marçais et al. (2018) http://mummer.sourceforge.net/

SeqPrep John St. John https://github.com/jstjohn/SeqPrep

Kallisto Bray et al. (2016) https://github.com/pachterlab/kallisto

limma R package Ritchie et al. (2015) https://bioconductor.org/packages/

release/bioc/html/limma.html

ASEr package Hunter Fraser lab https://github.com/TheFraserLab/ASEr

STAR v 2.4.2a Dobin et al. (2013) https://github.com/alexdobin/STAR/

releases/tag/STAR_2.4.2a

SAMtools Li et al. (2009) http://samtools.sourceforge.net/

R Version 3.6.1 R Core Team (2015) https://www.r-project.org/

PANTHER v 11 Mi et al. (2017) http://pantherdb.org/

MBASED Mayba et al. (2014) https://bioconductor.org/packages/

release/bioc/html/MBASED.html

Other

Sand Scott Pharma 10392

Polyurethane foam Hilti 3449060
RESOURCE AVAILABILITY

Lead contact
Further information and requests for resources and reagents should be directed to and will be fulfilled by the Lead Contact, Hopi E.

Hoekstra (hoekstra@oeb.harvard.edu).

Materials availability
This study did not generate new unique reagents.

Data and code availability

d RNA-seq data have been deposited at GEO and are publicly available as of date of publication. The accession number is listed

in the key resources table.

d This paper does not report any original code.

d Any additional information required to reanalyze the data reported in this paper is available from the Lead Contact upon

request.
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EXPERIMENTAL MODEL AND SUBJECT DETAILS

Animals
We originally obtained P. maniculatus bairdii (BW) and P. polionotus subgriseus (PO) outbred strains from the Peromyscus Genetic

Stock Center (University of South Carolina, Columbia, SC, USA), and then established breeding colonies at Harvard University. We

generated F1 hybrids by crossing P. maniculatus females with P. polionotusmales; the reciprocal cross direction suffers from hybrid

inviability (Maddock and Chang, 1979). All experimental animals were males and housed in standard polysulfone cages (19.7 3

30.5 cm and 16.5 cm high; Allentown, New Jersey, USA) in same sex and genotype groups, until testing adults at approximately

50–80 days of age. Housing cages contained enrichment as previously described (Lewarch and Hoekstra, 2018). We maintained an-

imals at 22�C with a 16:8h light:dark cycle and provided them with standard rodent food and water ad libitum. All procedures were

approved by the Harvard University Institutional Animal Care and Use Committee (protocol 27-09-3).

METHOD DETAILS

Burrow phenotyping
We measured burrowing behavior using large sand-filled (Scott Pharma, Marlborough, MA, USA) enclosures (1.23 1.53 1.1 m) set

up as previously described (Weber et al., 2013). We first ran all experimental animals through two ‘‘pretest’’ trials in the enclosures to

allow them to acclimate and to confirm individuals burrowed in a species- (or hybrid-) typical manner. Next, we randomly assigned

animals to a test trial cohort, ‘‘burrowing’’ or ‘‘control’’. Trials were separated by a two-day rest period. For pretest trials, we released

animals into enclosures two hours before the dark (active) phase of their light cycle. We then retrieved the animal 18 h later and re-

turned it to its home cage. For the test trial, we released animals in the ‘‘burrowing’’ cohort into the large sand enclosures for 90 min.

By contrast, we released animals in the ‘‘control’’ cohort into a new housing cage (as described above) containing only 0.14 kg sand,

but also for 90min. At the conclusion of each trial in the large sand enclosure, we identified all excavationswith sufficient overhangs to

conceal the animal’s body, classified them as ‘‘burrows’’, and made a cast of the burrow with polyurethane foam (Hilti Corporation,

Schaan, Liechtenstein) (Metz et al., 2017).Wemarked each cast with a horizontal level line, whichwas used tomeasure burrow length

and determine whether an animal performed upward digging (i.e., an escape tunnel).

RNA-seq library preparation
To capture behavior-relevant gene expression, we focused on the brain. Therefore, at the conclusion of the test trial, we immediately

euthanized animals using CO2 inhalation and rapidly dissected whole brains in chilled PBS, flash-froze the sample in liquid nitrogen,

and stored it at�80�C. Later, we homogenized tissues using a TissueLyser (Qiagen, Venlo, Netherlands) in Trizol (ThermoFisher Sci-

entific, Waltham, MA, USA), and extracted total RNA using 5Prime Phase Lock Gel Tubes Heavy (Quantabio, Beverly, MA, USA), fol-

lowed by clean-up with RNeasy columns (Qiagen, Venlo, Netherlands). We prepared RNA-seq libraries with a TruSeq Stranded

mRNA Library Prep Kit, following manufacturer’s instructions (Illumina, San Diego, CA, USA), and assessed library quality prior to

sequencing using a TapeStation 2200 (Agilent Technologies, Santa Clara, CA, USA). We performed paired-end sequencing (2 3

125 bp) on the Illumina HiSeq platform (San Diego, CA, USA).

Parental species RNA-seq
To compare gene expression both across treatments and species, we first removed low-quality and adaptor sequences using Seq-

Prep (https://github.com/jstjohn/SeqPrep). We then aligned these filtered reads to the P. maniculatus transcriptome (Pman_1.0_mR-

NA.fa) and quantified estimated expression using kallisto (Bray et al., 2016). We summed read counts across transcripts to obtain

gene-level expression values and selected genes with expression > 1 count in at least one species. To compute scale normalized

expression values across samples, we used TMM normalization. We then computed differential expression with the limma R pack-

age using voom transformation and linear models alternately using species or condition (burrowing/control) as factors (Ritchie et al.,

2015). We used Benjamini-Hochberg correction (Benjamini and Hochberg, 1995) on the resulting P-values and considered genes

with FDR < 5% as significant. Gene set enrichments were conducted using PANTHER v 11 (Mi et al., 2017).

SNP calling for allele-specific analyses
To assign alleles to one of the two species in our F1 hybrid RNAseq data, we first obtained the P. maniculatus (Pman_1.0, GenBank

accession number GCA_000500345.1) and P. polionotus (Ppol_1.3, GenBank accession number GCA_003704135.1) genomes. We

called heterozygous SNPs between these two species’ genomes using the MUMmer toolkit (Marçais et al., 2018). For memory ef-

ficiency, we split the reference genome (P. polionotus) into ten approximately equally sized segments, and then aligned the

P. maniculatus genome to each segment using the nucmer function. All called SNPs were obtained with the function show-snps (op-

tions: -I (remove INDELs); -r (sort by reference sequence); -l (include sequence length information)). Next, we combined the resulting

10 files containing SNP calls and filtered out ambiguous SNP calls. We used this ‘‘less conservative’’ list to mask the reference

genome during alignment for downstream allele-specific expression analyses (see below). Again, using the function show-snps,

we produced a second, ‘‘more conservative’’ list, this time obtaining all called SNPs and INDELs between the two species (options:

-c [uniquely aligned sequences only]; -r [sort by reference sequence]; -l [include sequence length information]). To control for SNPs
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arising from genomic rearrangements between P. maniculatus and P. polionotus, we removed SNPs within one read length of an

INDEL. We then filtered out ambiguous calls and selected only SNPs occurring within annotated coding genes, resulting in a list

of inter-specific heterozygous SNPs for use in conservative allele-specific expression quantification downstream.

Allele-specific expression quantification
To quantify differences in allele-specific expression (ASE) levels in F1 hybrids, we first removed low-quality and adaptor sequences

from all F1 hybrid RNA-seq samples using SeqPrep (https://github.com/jstjohn/SeqPrep), as with the parental species samples

(described above). We then masked the P. maniculatus genome at the sites called in the ‘‘less conservative’’ list above using the

perl script MaskReferencefromBED (https://github.com/TheFraserLab/ASEr) to avoid reference genome mapping bias. Reads

from all F1 hybrid samples were aligned to this masked genome using STAR v 2.4.2a (Dobin et al., 2013) in 2-passmode.We removed

duplicate reads from the resulting .bam files and sorted bymate pair using SAMtools (Li et al., 2009). We determined ASE at the read-

level using the script GetGeneASEbyReads in the ASEr package (https://github.com/TheFraserLab/ASEr). To ensure confidence in

the species of origin for each quantified SNP, we considered ASE at only sites provided in the ‘‘more conservative’’ list of heterozy-

gous SNPs identified in the above section.

Allele-specific expression analyses
To test for allele-specific expression differences, we first filtered ASE calls from GetGeneASEbyReads requiring at least 1 count per

allele from all genes per sample. This was motivated by the fact that the present of 0 counts for an allele may arise from a prepon-

derance of false negatives due to our use of a conservative and small, but high confidence, list of SNPs for the initial quantification of

ASE. This choice reflects a tradeoff in the ability to find true monoallelic expression and the capacity to confidently assign reads to a

species of origin, the latter of which we opted to prioritize given the broader evolutionary focus of this study. In addition to this initial

filtering, we removed genes known to be imprinted inMusmusculus (Perez et al., 2015) (Table S4). After filtering we computed an ASE

ratio for each gene by calculating the log2 ratio of P. maniculatus allelic counts compared to P. polionotus allelic counts. Positive

values correspond to a P. maniculatus allelic bias while negative values reflect a P. polionotus bias.

To test for significant biases in ASE per sample, we used a two-tailed binomial test of the P. maniculatus and P. polionotus allele

counts per gene and adjusted the resulting P-values within each sample using Bonferroni correction. We considered genes to show

significant ASE in a given condition (control/burrowing) if they had adjusted P-values <0.05 across all three condition replicates and

biased in the same direction.

Calculating and analyzing differential allele-specific expression (diffASE)
Differential allele-specific expression (diffASE) was computed by comparing divergence in allele counts across control and burrowing

conditions via a Fisher’s exact test. Since five of the six animals studied were related (3 siblings: 2 control, 1 burrowing; 2 siblings: 1

control, 1 burrowing; 1 outlier: burrowing), we were able to partially factor in genetic background by performing this analysis on two

sets of siblings from opposite conditions and a third unrelated pair. For each pair, we compared allelic counts in a 23 2 contingency

table (P. polionotus burrowing allele, P. polionotus control allele; P. maniculatus burrowing allele, P. maniculatus control allele). To

assess significance across all three pairs, we combined the resulting P-values using Fisher’s method and then adjusted for multiple

tests using Bonferroni correction. We also generated a more conservative gene list by filtering for situations in which all three repli-

cates displayed significant diffASE (as opposed to significance from the combined P-values).

Since RNA-seq data can be prone to overdispersion, we also calculated diffASE using a beta-binomial model via the R package

MBASED (Mayba et al., 2014). Analyses were performed using a 2-sample analysis with default parameters. Significance was as-

sessed viaP-values extracted from running 1,000,000 simulations per pair of animals (following the same design as the Fisher’s exact

tests above). We found that, for each pair, the P-values calculated by MBASED were correlated with the Fisher’s exact test results at

an r2 > 0.99, suggesting that both methods were capturing the same statistical structure in the data.

Using the genes identified as possessing significant diffASE (above), we performed analyses of allelic induction. We inferred the

direction of allelic induction by comparing the log2 ratios of allelic counts as a function of condition, as opposed to species, such that,

for each gene, two ratios were calculated: (1) log2(P. maniculatus burrowing/P. maniculatus control) and (2) log2(P. polionotus bur-

rowing/P. polionotus control). We then categorized genes as having either P. maniculatus- or P. polionotus-biased induction by

comparing difference in the absolute magnitude of these two ratios. To perform sign tests, we used the resulting lists as input for

gene set-specific enrichments of either P. maniculatus or P. polionotus induction. To do so, we used a Fisher’s exact test to compare

the number of upregulated P. maniculatus alleles and the number of upregulated P. polionotus alleles contained within a gene set.

Using Bonferroni correction, we adjusted all P-values to control for multiple testing across gene sets in an ontology.

Intersecting QTL and gene expression data
To test for possible intersection between cis-regulatory divergence and interspecific genetic variation we compared gene expression

patterns to a published QTL map of burrowing from backcross of P. polionotus and P. maniculatus (Weber et al., 2013). The original

QTL study associated entrance tunnel length, burrow length, and escape tunnel presence with 526 genetic markers, measuring the

strength of association via log of odds (LOD). Here, we considered an expanded set of structural traits related to burrowing (n = 23)

measured from the original data set. We explored the extent to which genes involved in locomotor coordination (identified by the
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burrowing-induced allele-specific induction analyses) possessed systematically different LOD scores compared to genomic back-

ground. To do so, we associated each gene from our set of interest with its nearest genomic marker (choosing just one gene in cases

in whichmultiple genes were associated with the samemaker) and, for each burrowing trait, computed themedian LOD score for the

gene set. We then computed the median and mean LOD scores for 10,000 randomly chosen sets of markers of the same size as the

gene set of interest and calculated a P-value by calculating the number of times the shuffled LOD scores were greater than

the observed one, divided by the number of permutations (n = 10,000). This test was repeated for seven different gene lists: differ-

entially induced locomotor coordination genes (P. polionotus- and P. maniculatus-biased genes combined; n = 31 genes),

P. polionotus-biased locomotor coordination genes (n = 26), P. maniculatus-biased locomotor coordination genes (n = 5), differen-

tially induced genes associated with abnormal gait (n = 22), genes with significant diffASE (n = 177), genes with the most significant

ASE across all three burrowing replicates (measured via binomial test of allele counts; n = 200), and genes most differentially ex-

pressed between burrowing P. maniculatus and P. polionotus parental samples (n = 200).

To assess the ability of markers associated with locomotor coordination to predict the burrowing phenotypes, we complemented

the LOD analyses with a series of multiple regression-based permutation tests. Here, we again used permutation tests (n = 10,000) on

the 23 burrowing traits but instead compared the fit of a multiple regression predicting phenotypic measurements from the genotype

at each gene list-associated marker for all 272 animals in the data set. We first computed the empirical fit (r2) for the markers asso-

ciated with the gene set of interest and then extracted the fits for 10,000 random subsets of markers of the same length fromwhich P-

values were calculated above. Results for the tests described in this section are in Tables S2 and S3.

QUANTIFICATION AND STATISTICAL ANALYSIS

Statistical details of experiments can be found in results and corresponding methods details. All statistical tests were performed in R

Version 3.6.1 (R Core Team, 2015).
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